Topics

1). If every interior angle of regular octagon is $$\Large 135 ^{\circ}$$, then find the external angle of it.
 A). $$\Large 65 ^{\circ}$$ B). $$\Large 75 ^{\circ}$$ C). $$\Large 45 ^{\circ}$$ D). $$\Large 55 ^{\circ}$$
2). In a $$\Large \triangle ABC, \angle A : \angle B : \angle C = 2 : 4 : 3$$. The shortest side and the longest side of the triangles are respectively.
 A). AC and AB B). AC and BC C). BC and AC D). AB and AC
3). In a $$\Large \triangle$$ABC, $$\Large \angle A = 90 ^{\circ}$$, $$\Large \angle C = 55 ^{\circ}$$ and $$\Large \overline{AD}\perp\overline{BC}$$, What is the value of $$\Large \angle BAD$$?
 A). $$\Large 60 ^{\circ}$$ B). $$\Large 45 ^{\circ}$$ C). $$\Large 55 ^{\circ}$$ D). $$\Large 35 ^{\circ}$$
4). O is the circumcentre of the $$\Large \triangle$$ ABC. If $$\Large \angle BAC$$ = $$\Large 50 ^{\circ}$$, then $$\Large \angle OBC$$ is equal to
 A). $$\Large 30 ^{\circ}$$ B). $$\Large 60 ^{\circ}$$ C). $$\Large 40 ^{\circ}$$ D). $$\Large 50 ^{\circ}$$
5). ABC is a right angled triangle such that AB = a - b, BC = a and CA = a + b. D is a point on BC such that BD = AB. The ratio of BD : DC for any value of a and b is given by
 A). 3 ; 2 B). 4 : 3 C). 5 : 4 D). 3 : 1

6). ABC is a triangle, where BC = 2AB, $$\Large \angle B$$ = $$\Large 30 ^{\circ}$$ and $$\Large \angle A$$ = $$\Large 90 ^{\circ}$$. The magnitude of the side AC is
 A). $$\Large \frac{2 BC}{3}$$ B). $$\Large \frac{3 BC}{4}$$ C). $$\Large \frac{BC}{\sqrt{3}}$$ D). $$\Large \frac{\sqrt{3 BC}}{2}$$
7). The bisectors BI and CI of $$\Large \angle B$$ and $$\Large \angle C$$ of $$\Large \triangle ABC$$ meet in I. What is $$\Large \angle BIC$$ equal to?
 A). $$\Large 90 ^{\circ} - \frac{A}{4}$$ B). $$\Large 90 ^{\circ} + \frac{A}{4}$$ C). $$\Large 90 ^{\circ} - \frac{A}{2}$$ D). $$\Large 90 ^{\circ} + \frac{A}{2}$$
8). In the figure given below, $$\Large \angle PQR$$ = $$\Large 90 ^{\circ}$$ and QL is a median, PQ = 5 cm and QR = 12 cm. Then, QL is equal to
 A). 5 cm B). 5.5 cm C). 6 cm D). 6.5 cm
9). ABC and XYZ are two similar triangles with $$\Large \angle C$$ = $$\Large \angle Z$$, whose areas are respectively 32 and 60.5. If XY = 7.7 cm, then what is AB equal to?
 A). 5.6 cm B). 5.8 cm C). 6.0 cm D). 6.2 cm
10). ABC is a triangle right angled at A and a $$\Large \perp AD$$ is drawn on the hypotenuse BC. What is BC.AD equal to?