If one of the roots of quadratic equation $$\Large 7x^{2}-50x+k=0$$ is 7, then what is the value of k?
 A) 7 B) 1 C) $$\Large \frac{50}{7}$$ D) $$\Large \frac{7}{50}$$

 A) 7

Given equation is $$\Large 7x^{2}-50x+k=0$$

Here, a = 7, b = -50, c = k

Since, $$\Large \alpha + \beta =\frac{-b}{a}$$

Therefore, $$\Large \alpha + \beta =\frac{50}{7}$$

or $$\Large \beta =\frac{50}{7}-7$$

=> $$\Large \beta =\frac{1}{7}$$ [Because $$\Large \alpha = 7$$(given)]

and $$\Large \alpha \beta =\frac{c}{a}$$

or $$\Large 7 \times \frac{1}{7}=\frac{k}{7}$$

k = 7

Similar Questions
1). Find the roots of the equation $$\Large 2x^{2}-11x+15=0$$
 A). $$\Large 3 \ and \ \frac{5}{2}$$ B). $$\Large -3 \ and \ -\frac{5}{2}$$ C). $$\Large 5 \ and \ \frac{3}{2}$$ D). $$\Large -5 \ and \ -\frac{3}{2}$$
2). The quadratic equation whose roots are 3 and -1, is
 A). $$\Large x^{2}-4x+3=0$$ B). $$\Large x^{2}-2x-3=0$$ C). $$\Large x^{2}+2x-3=0$$ D). $$\Large x^{2}+4x+3=0$$
3). $$\Large x^{2}+x-20=0; y^{2}-y-30=0$$
 A). If x>y B). $$\Large If \ x \ge y$$ C). lfx D). $$\Large If \ x \le y$$
4). $$\Large 225x^{2}-4=0; \sqrt{225y}+2=0$$
 A). If x>y B). $$\Large If \ x\ge y$$ C). lfx D). If x = y or relation cannot be established
5). $$\Large \frac{4}{\sqrt{x}}+\frac{7}{\sqrt{x}}=\sqrt{x;}$$ $$\Large y^{2}-\frac{ \left(11\right)^{\frac{5}{2}} }{\sqrt{y}} =0$$
 A). If x>y B). $$\Large If \ x\ge y$$ C). lfx D). If x = y or relation cannot be established
6). $$\Large x^{2}-365=364; y-\sqrt{324}=\sqrt{81}$$
 A). If x>y B). $$\Large If \ x \ge y$$ C). lfx D). $$\Large If \ x \le y$$
7). $$\Large 3x^{2}+8x+4=0; 4y^{2}-19y+12=0$$
 A). If x>y B). $$\Large If \ x\ge y$$ C). lfx D). $$\Large If \ x \le y$$
8). $$\Large x^{2}-x-12=0; y^{2}+5y+6=0$$
 A). If x>y B). $$\Large If \ x\ge y$$ C). lfx D). $$\Large If \ x \le y$$
9). $$\Large x^{2}-8x+15=0; y^{2}-3y+2=0$$
 A). If x>y B). $$\Large If x\ge y$$ C). lfx D). $$\Large If x \le y$$
10). $$\Large x^{2}-32=112; y-\sqrt{169}=0$$
 A). If x>y B). $$\Large If x\ge y$$ C). lfx D). If x = y or relation cannot be established