• $$\Large x^{2}-365=364; y-\sqrt{324}=\sqrt{81}$$
 A) If x>y B) $$\Large If \ x \ge y$$ C) lfx D) $$\Large If \ x \le y$$

 D) $$\Large If \ x \le y$$

$$\Large x^{2} - 365 = 364$$

=>$$\Large x^{2} = 364 + 365$$

Therefore, $$\Large x = \sqrt{729} = \pm 27$$

and $$\Large y - \sqrt{324} = \sqrt{81} => y - 18 = 9$$

Therefore, y = 27

So, $$\Large y\ge x \ or \ x \le y$$ because y = 27 and x = -27 and x = 27

##### Similar Questions
1). $$\Large 3x^{2}+8x+4=0; 4y^{2}-19y+12=0$$
 A). If x>y B). $$\Large If \ x\ge y$$ C). lfx D). $$\Large If \ x \le y$$
2). $$\Large x^{2}-x-12=0; y^{2}+5y+6=0$$
 A). If x>y B). $$\Large If \ x\ge y$$ C). lfx D). $$\Large If \ x \le y$$
3). $$\Large x^{2}-8x+15=0; y^{2}-3y+2=0$$
 A). If x>y B). $$\Large If x\ge y$$ C). lfx D). $$\Large If x \le y$$
4). $$\Large x^{2}-32=112; y-\sqrt{169}=0$$
 A). If x>y B). $$\Large If x\ge y$$ C). lfx D). If x = y or relation cannot be established
5). $$\Large x-\sqrt{121}=0; y^{2}-121=0$$
 A). If x>y B). $$\Large If \ x\ge y$$ C). lfx D). If x = y or relation cannot be established
6). $$\Large x^{2}-16=0; y^{2}-9y+20=0$$
 A). If x>y B). $$\Large If \ x\ge y$$ C). lf x D). $$\Large If \ x \le y$$
7). If $$\Large x^{2} = 6 + \sqrt{6+\sqrt{6 + \sqrt{6+.... ...... \infty}}}$$ then what is one of the values of x equal to?
8). The sum of a number and its reciprocal is $$\Large \frac{10}{3}$$, then the numbers are
 A). $$\Large 3, \frac{1}{3}$$ B). $$\Large 3, -\frac{1}{3}$$ C). $$\Large -3, \frac{1}{3}$$ D). $$\Large -3, -\frac{1}{3}$$
 A). $$\Large x^{2}+10x+9=0$$ B). $$\Large x^{2}-10x+16=0$$ C). $$\Large x^{2}-10x+9=0$$ D). None of the above.
10). The difference in the roots of the equation $$\Large 2x^{2}-11x+5=0$$ is