Find the roots of the equation $$\Large 2x^{2}-11x+15=0$$
 A) $$\Large 3 \ and \ \frac{5}{2}$$ B) $$\Large -3 \ and \ -\frac{5}{2}$$ C) $$\Large 5 \ and \ \frac{3}{2}$$ D) $$\Large -5 \ and \ -\frac{3}{2}$$

 A) $$\Large 3 \ and \ \frac{5}{2}$$

$$\Large 2x^{2} - \left(6x + 5x\right) + 15 = 0$$

[by factorization method]

= $$\Large 2x^{2} - 6x - 5x + 15 = 0$$

= $$\Large 2x \left(x - 3\right) - 5 \left(x - 3\right) = 0$$

= $$\Large \left(2x - 5\right) \left(x - 3\right) = 0$$

Therefore, $$\Large x = \frac{5}{2}, 3$$

Hence, the roots are $$\Large \frac{5}{2}, 3$$

Similar Questions
1). The quadratic equation whose roots are 3 and -1, is
 A). $$\Large x^{2}-4x+3=0$$ B). $$\Large x^{2}-2x-3=0$$ C). $$\Large x^{2}+2x-3=0$$ D). $$\Large x^{2}+4x+3=0$$
2). $$\Large x^{2}+x-20=0; y^{2}-y-30=0$$
 A). If x>y B). $$\Large If \ x \ge y$$ C). lfx D). $$\Large If \ x \le y$$
3). $$\Large 225x^{2}-4=0; \sqrt{225y}+2=0$$
 A). If x>y B). $$\Large If \ x\ge y$$ C). lfx D). If x = y or relation cannot be established
4). $$\Large \frac{4}{\sqrt{x}}+\frac{7}{\sqrt{x}}=\sqrt{x;}$$ $$\Large y^{2}-\frac{ \left(11\right)^{\frac{5}{2}} }{\sqrt{y}} =0$$
 A). If x>y B). $$\Large If \ x\ge y$$ C). lfx D). If x = y or relation cannot be established
5). $$\Large x^{2}-365=364; y-\sqrt{324}=\sqrt{81}$$
 A). If x>y B). $$\Large If \ x \ge y$$ C). lfx D). $$\Large If \ x \le y$$
6). $$\Large 3x^{2}+8x+4=0; 4y^{2}-19y+12=0$$
 A). If x>y B). $$\Large If \ x\ge y$$ C). lfx D). $$\Large If \ x \le y$$
7). $$\Large x^{2}-x-12=0; y^{2}+5y+6=0$$
 A). If x>y B). $$\Large If \ x\ge y$$ C). lfx D). $$\Large If \ x \le y$$
8). $$\Large x^{2}-8x+15=0; y^{2}-3y+2=0$$
 A). If x>y B). $$\Large If x\ge y$$ C). lfx D). $$\Large If x \le y$$
9). $$\Large x^{2}-32=112; y-\sqrt{169}=0$$
 A). If x>y B). $$\Large If x\ge y$$ C). lfx D). If x = y or relation cannot be established
10). $$\Large x-\sqrt{121}=0; y^{2}-121=0$$
 A). If x>y B). $$\Large If \ x\ge y$$ C). lfx D). If x = y or relation cannot be established