Topics

# Find the value of $$\Large 3log_{a}2-log_{a}8$$

 A) 0 B) 8 C) 4 D) 10

 A) 0

$$\Large 3log_{a}2-log_{a}8=log_{a}2^{3}-log_{a}8$$

=$$\Large log_{a}2^{3}-log_{a}8$$

=$$\Large log_{a}8-log_{a}8=0$$

Part of solved Logarithms questions and answers : >> Elementary Mathematics >> Logarithms

Similar Questions
1). Simplify: $$\Large log_{a}10-log_{a} \left(\frac{10}{a}\right)$$
 A). 0 B). 1 C). 100 D). -1
2). Find the value of $$\Large \frac{1}{2}log_{2}16$$
 A). 4 B). 8 C). 2 D). None of these
3). Find the value of $$\Large log_{10}8100$$
 A). $$\Large 2+2log_{10}9$$ B). $$\Large 2log_{10}9$$ C). $$\Large 2+log_{10}9$$ D). $$\Large 2 \left(1+3log_{10}9\right)$$
4). If log2=0.3010 and log3=.04771. Find the value of log12
 A). 0.7781 B). 1.0791 C). 0.9541 D). 0.602
5). Find the value of $$\Large \frac{75}{16}-2log\frac{5}{9}+log\frac{32}{243}$$
 A). log5 B). log4 C). log2 D). log3

6). Simplify: $$\Large log_{10} \left(\frac{55}{46}\right)-log_{10} \left(\frac{65}{69}\right)+log_{10} \left(\frac{26}{33}\right)$$
 A). 0 B). 2 C). 4 D). 13
7). Find the value of $$\Large \frac{log_{10}400}{log_{10}4}$$
8). Find the value of $$\Large 3-2log_{5}3$$
 A). $$\Large log_{5} \left(13\frac{8}{9}\right)$$ B). $$\Large log_{5}9$$ C). $$\Large log_{5} \left(\frac{9}{8}\right)$$ D). None of these
9). Find the value of $$\Large \frac{3log2+2log3}{2log6+log2}$$
10). Find the value of $$\Large \frac{log16-2log2+5log3-log27}{log4+log9}$$