Topics

# Consider the numbers 16 and 24.

 A) 42 B) 44 C) 46 D) 48

 D) 48

Factorisataion Method:

Factors of 16 are 2, 4, 8, 16

$$\Large \frac{16, 24}{2} = \frac{8, 12}{4} = 2, 3$$

LCM of 16 and 24 is $$\Large 2 \times 4 \times 2 \times 3 = 48$$

LCM = $$\Large \frac{Product\ of\ the\ given\ number}{HCF\ of\ the\ given\ number}$$

Part of solved LCM and HCF questions and answers : >> Elementary Mathematics >> LCM and HCF

Similar Questions
1). Find LCM of 252 and 840
 A). 10080 B). 11140 C). 12100 D). 14400
2). Find the HCF and LCM of $$\Large \frac{HCF\ of\ 2,\ 4,\ 6}{LCM\ of\ 3.\ 9.\ 13}$$
 A). 14 B). 12 C). 16 D). 18
3). Find the greatest number that will divide 259 and 847 leaving the remainder 7.
 A). 28 B). 35 C). 21 D). 49
4). The HCF of 117,156, 195 is
 A). 39 B). 27 C). 29 D). 49
5). Find the LCM of 8, 12, 27, 36
 A). 36 B). 216 C). 422 D). 432

6). The simplest form of $$\Large \frac{1302}{1426}$$ is
 A). $$\Large \frac{41}{46}$$ B). $$\Large \frac{46}{41}$$ C). $$\Large \frac{21}{23}$$ D). $$\Large \frac{21}{26}$$
 A). 3 hrs. B). 1 hr. C). 4 hrs. D). $$\Large \frac{2}{3}$$ hrs.