For what value of \( \Large \lambda \) the sum of the squares of the roots of \( \Large x^{2}+ \left(2+\lambda\right)n-\frac{1}{2} \left(1+\lambda\right)=0 \) is minimum?


A) \( \Large \frac{3}{2} \)

B) 1

C) \( \Large \frac{1}{2} \)

D) \( \Large \frac{11}{4} \)

Correct Answer:
C) \( \Large \frac{1}{2} \)

Description for Correct answer:

Given equation is \( \Large x^{2}+ \left(2+\lambda\right)x-\frac{1}{2} \left(1+\lambda \right)=0 \).

Let \( \Large \alpha \  and \ \beta \) are the roots of given equations

=> \( \Large \alpha + \beta =- \left(2+ \lambda \right) \) and \( \Large \alpha \beta = - \left(\frac{1+\lambda}{2}\right) \)

Now, \( \Large \alpha ^{2}+ \beta ^{2}= \left( \alpha + \beta \right)^{2}-2 \alpha \beta \)

=> \( \Large \alpha ^{2}+ \beta ^{2}= \left[ - \left(2+\lambda\right)^{2}+2\frac{ \left(1+\lambda\right) }{2} \right] \)

=>\( \Large \alpha ^{2}+ \beta ^{2}= \lambda^{2}+4+4\lambda+1+\lambda=\lambda^{2}+5\lambda+5 \)

Now we take the option simultaneously

=> It is minimum for \( \Large \lambda = \frac{1}{2} \).


Part of solved Quadratic Equations questions and answers : >> Elementary Mathematics >> Quadratic Equations








Comments

No comments available




Similar Questions
1). Given that \( \Large \tan \alpha \) and \( \Large \tan \beta \) are the roots of \( \Large x^{2}-px+q=0 \), then the value of \( \Large \sin^{2} \left(\alpha + \beta \right) \) is equal to:
A). \( \Large \frac{p^{2}}{p^{2}+ \left(1-q\right)^{2} } \)
B). \( \Large \frac{p^{2}}{p^{2}+q^{2}} \)
C). \( \Large \frac{q^{2}}{p^{2} \left(1-q\right)^{2} } \)
D). \( \Large \frac{p^{2}}{ \left(p+q\right)^{2} } \)
-- View Answer
2). The number of values of K for which the system of equations \( \Large \left(K+1\right)x+84=4K \) and \( \Large Kx+ \left(K+3\right)y=3 K-1 \) has infinitely many solution, is:
A). 0
B). 1
C). 2
D). infinite
-- View Answer
3). The set of all real numbers x for which \( \Large x^{2}-|x+2|+x>0 \) is:
A). \( \Large \left(-\infty, -2\right) \ \left(2, \infty\right) \)
B). \( \Large \left(-\infty, -\sqrt{2}\right) \ \left(\sqrt{2}, \infty\right) \)
C). \( \Large \left(-\infty, -1\right) \ \left(1, \infty\right) \)
D). \( \Large \left(\sqrt{2}, \infty\right) \)
-- View Answer
4). Let a, b, c be positive numbers, the following systems of equations in x, y and z \( \Large \frac{x^{2}}{a^{2}} +\ \frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1; \ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} +\ \frac{z^{2}}{c^{2}}=1 and\ \frac{-x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \) has;
A). no solutions
B). unique solution
C). infinitely many solution
D). finitely many solution.
-- View Answer
5). If \( \Large 2 \sin^{2}\frac{ \pi }{8} \) is a root of equation\( \Large x^{2}+ax+b=0 \), where a and b are rational numbers, then a - b is equal to
A). \( \Large -\frac{5}{2} \)
B). \( \Large -\frac{3}{2} \)
C). \( \Large -\frac{1}{2} \)
D). \( \Large \frac{1}{2} \)
-- View Answer


6). If \( \Large \sin \theta +cosec \theta =2,\ then\ \sin^{2} \theta + cosec^{2} \theta \)  is equal to
A). 1
B). 4
C). 2
D). none of these
-- View Answer
7). The value of \( \Large \frac{\cot^{2} \theta +1}{\cot^{2} \theta -1} \) is equal to:
A). \( \Large \sin 2 \theta \)
B). \( \Large \cos 2 \theta \)
C). \( \Large \cosh 2 \theta \)
D). \( \Large \sec 2 \theta \)
-- View Answer
8). If \( \Large \tan A = 2 \tan B + \cot B,\ then\ 2 \tan \left(A-B\right) \) is equal to:
A). \( \Large \tan B \)
B). \( \Large 2 \tan B \)
C). \( \Large \cot B \)
D). \( \Large 2 \cot B \)
-- View Answer
9). If \( \Large \tan A - \tan B = x\ and\ \cot B - \cot A = y,\) then\( \Large  \cot \left(A-B\right) \) is equal to:
A). \( \Large \frac{1}{x}+y \)
B). \( \Large \frac{1}{xy} \)
C). \( \Large \frac{1}{x}-\frac{1}{y} \)
D). \( \Large \frac{1}{x}+\frac{1}{y} \)
-- View Answer
10). If \( \Large \sin \theta = -\frac{4}{5}\ and\ \theta \) and \( \Large \theta \) lies in the third quadrant, then \( \Large \cos \frac{ \theta }{2} \) is equal to:
A). \( \Large \frac{1}{\sqrt{5}} \)
B). \( \Large -\frac{1}{\sqrt{5}} \)
C). \( \Large \frac{2}{\sqrt{5}} \)
D). \( \Large -\frac{2}{\sqrt{5}} \)
-- View Answer