The set of all real numbers x for which \( \Large x^{2}-|x+2|+x>0 \) is:


A) \( \Large \left(-\infty, -2\right) \ \left(2, \infty\right) \)

B) \( \Large \left(-\infty, -\sqrt{2}\right) \ \left(\sqrt{2}, \infty\right) \)

C) \( \Large \left(-\infty, -1\right) \ \left(1, \infty\right) \)

D) \( \Large \left(\sqrt{2}, \infty\right) \)

Correct Answer:
B) \( \Large \left(-\infty, -\sqrt{2}\right) \ \left(\sqrt{2}, \infty\right) \)

Description for Correct answer:

Given \( \Large x^{2}-|x+2|+x>0 \)

we know that\( \Large |x+2|=\pm \left(x+2\right) \)

If \( \Large |x+2|=-x+2x\ge -2 \)

Equation (i) becomes \( \Large \left(when\ x \ge - 2 \right) \)

\( \Large x^{2}-x-2+x>0 \)

\( \Large x^{2}-2 > 0 \)

=> \( \Large x < -\sqrt{2}\ or\ x > \sqrt{2} \)

\( \Large x \epsilon \left[ -2, -\sqrt{2} \right] \cup \left(\sqrt{2}, \infty\right) \)

If therefore, equation (i) becomes

\( \Large x^{2}+x+2+x>0\ when\ x \le -2 \)

\( \Large x^{2}+2x+2 > 0\ when\ x \le -2 \)

\( \Large \left(x+1\right)^{2}+1 > 0\ when x \le -2 \)

which is true for all x.

\( \Large x < -2\ or\ x \left(-\infty,\ -2\right) \)

from equations (ii) and (iii)

\( \Large x \epsilon \left(-\infty,\ -\sqrt{2} \right) \cup \left(\sqrt{2},\ \infty\right) \)


Part of solved Quadratic Equations questions and answers : >> Elementary Mathematics >> Quadratic Equations








Comments

No comments available




Similar Questions
1). Let a, b, c be positive numbers, the following systems of equations in x, y and z \( \Large \frac{x^{2}}{a^{2}} +\ \frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1; \ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} +\ \frac{z^{2}}{c^{2}}=1 and\ \frac{-x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \) has;
A). no solutions
B). unique solution
C). infinitely many solution
D). finitely many solution.
-- View Answer
2). If \( \Large 2 \sin^{2}\frac{ \pi }{8} \) is a root of equation\( \Large x^{2}+ax+b=0 \), where a and b are rational numbers, then a - b is equal to
A). \( \Large -\frac{5}{2} \)
B). \( \Large -\frac{3}{2} \)
C). \( \Large -\frac{1}{2} \)
D). \( \Large \frac{1}{2} \)
-- View Answer
3). If \( \Large \sin \theta +cosec \theta =2,\ then\ \sin^{2} \theta + cosec^{2} \theta \)  is equal to
A). 1
B). 4
C). 2
D). none of these
-- View Answer
4). The value of \( \Large \frac{\cot^{2} \theta +1}{\cot^{2} \theta -1} \) is equal to:
A). \( \Large \sin 2 \theta \)
B). \( \Large \cos 2 \theta \)
C). \( \Large \cosh 2 \theta \)
D). \( \Large \sec 2 \theta \)
-- View Answer
5). If \( \Large \tan A = 2 \tan B + \cot B,\ then\ 2 \tan \left(A-B\right) \) is equal to:
A). \( \Large \tan B \)
B). \( \Large 2 \tan B \)
C). \( \Large \cot B \)
D). \( \Large 2 \cot B \)
-- View Answer


6). If \( \Large \tan A - \tan B = x\ and\ \cot B - \cot A = y,\) then\( \Large  \cot \left(A-B\right) \) is equal to:
A). \( \Large \frac{1}{x}+y \)
B). \( \Large \frac{1}{xy} \)
C). \( \Large \frac{1}{x}-\frac{1}{y} \)
D). \( \Large \frac{1}{x}+\frac{1}{y} \)
-- View Answer
7). If \( \Large \sin \theta = -\frac{4}{5}\ and\ \theta \) and \( \Large \theta \) lies in the third quadrant, then \( \Large \cos \frac{ \theta }{2} \) is equal to:
A). \( \Large \frac{1}{\sqrt{5}} \)
B). \( \Large -\frac{1}{\sqrt{5}} \)
C). \( \Large \frac{2}{\sqrt{5}} \)
D). \( \Large -\frac{2}{\sqrt{5}} \)
-- View Answer
8). The value of \( \Large \cos 1 ^{\circ} \cos 2 ^{\circ} \cos 3 ^{\circ} ....... \cos 100 ^{\circ} \) is equal to:
A). 1
B). -1
C). 0
D). none of these
-- View Answer
9). The value of \( \Large \sin 12 ^{\circ} \sin 48 ^{\circ} \sin 54 ^{\circ} \) is equal to:
A). \( \Large \frac{1}{16} \)
B). \( \Large \frac{1}{32} \)
C). \( \Large \frac{1}{8} \)
D). \( \Large \frac{1}{4} \)
-- View Answer
10). The value of \( \Large 2 cos\ x - \cos 3x - \cos 5x \) is equal to
A). \( \Large 16 \cos^{3} x \sin^{2} x \)
B). \( \Large 16 \sin^{3} x \cos^{2} x \)
C). \( \Large 4 \cos^{3} x \sin^{2} x \)
D). \( \Large 4 \sin^{3} x \cos^{2} x \)
-- View Answer