# Boat A travels upstream from point X to point Y in 2 hours more than the time taken by Boat B to travel downstream from point Y to point Z. The distance between X and Y is 40 km and that distance between Y and Z is 24 km. The speed of Boat B in still water is 10 km/h and the speed of Boat A in still water is equal to the speed of Boat B downstream. What is the speed of Boat A in still water? (Consider the speed of the current to be the same).

Correct Answer: Description for Correct answer:

Speed of current = x kmph

Rate downstream of boat B = (10 + x) kmph

Speed of boat A in still water = (10 + x)kmph

\( \Large \therefore \) Rate upstream

= 10 kmph

According to the question,

\( \Large \frac{40}{10} - \frac{24}{10 + x} = 2 \)

=> \( \Large \frac{24}{10 + x} = 4 - 2 = 2 \)

=> 10 + x = 12

=> x = 2 kmph

\( \Large \therefore \) Speed of boat A in still water

= 10 + 2 = 12 kmph

Part of solved Aptitude questions and answers :

>> Aptitude