Topics

A) \( \Large - 4 < x - \frac{1}{2} \) |

B) \( \Large \frac{1}{2} < x < 4 \) |

C) 1 < x < 2 |

D) - 2 < x < 1 |

Correct Answer:

A) \( \Large - 4 < x - \frac{1}{2} \) |

Description for Correct answer:

\( \Large 2x^{2} + 9x + 4 = 0 \)

x = \( \Large\frac{ -(9) \pm \sqrt{(9)^{2} - 4 \times 2 \times 4}}{2 \times 2} \)

= \( \Large \frac{ -(9) \pm \sqrt{81 - 32}}{4} = \frac{-(9) \pm \sqrt{49}}{4} \)

= \( \Large \frac{-(9) \pm 7}{4} = \frac{-1}{2} , -4 \)

Therefore, the required answer is

\( \Large - 4 < x < - \frac{1}{2} \)

\( \Large 2x^{2} + 9x + 4 = 0 \)

x = \( \Large\frac{ -(9) \pm \sqrt{(9)^{2} - 4 \times 2 \times 4}}{2 \times 2} \)

= \( \Large \frac{ -(9) \pm \sqrt{81 - 32}}{4} = \frac{-(9) \pm \sqrt{49}}{4} \)

= \( \Large \frac{-(9) \pm 7}{4} = \frac{-1}{2} , -4 \)

Therefore, the required answer is

\( \Large - 4 < x < - \frac{1}{2} \)

Part of solved Aptitude questions and answers : >> Aptitude

Comments

Similar Questions