The coefficient of x in the equation \( \Large x^{2}+px+q=0 \) was taken as 17 in place of 13 its roots Were found to be -2 and -15. The roots of the original equation are:


A) 3,10

B) -3 , -10

C) -5, -8

D) None of these

Correct Answer:
B) -3 , -10

Description for Correct answer:
Let the equation (incorrectly written form)

be \( \Large x^{2}+17x+q=0 \)

since, roots are -2, -15

Therefore, q = 30

so, correct equation is \( \Large x^{2}+13x+30=0 \)

=> \( \Large x^{2}+10x+3x+30=0 \)

=> \( \Large \left(x+3\right) \left(x+10\right)=0 \)

=> x = -3, -10

Part of solved Quadratic Equations questions and answers : >> Elementary Mathematics >> Quadratic Equations








Comments

No comments available




Similar Questions
1). The number which exceeds its positive Square roots by 12 is:
A). 9
B). 16
C). 25
D). none of these
-- View Answer
2). Let a, b, c be real numbers a \( \ne \) 0. If \( \Large \alpha \) is a root of \( \Large a^{2}x^{2}+bx+c=0, \),\( \Large \beta \) is a root of \( \Large a^{2}x^{2}-bx-c=0 \) and \( \Large 0< \alpha < \beta \) then the equation \( \Large a^{2}x^{2}+2bx+2c=0 \) has a root of \( \gamma \) that always satisfies:
A). \( \Large \gamma = \frac{ \alpha + \beta }{2} \)
B). \( \Large \gamma = \alpha + \frac{ \beta }{2} \)
C). \( \Large \gamma = \alpha \)
D). \( \Large \alpha < \gamma < \beta \)
-- View Answer
3). The equation \( \Large x \left(\frac{3}{4}log_{2}x\right)^{2}+ \left(log_{2}x\right)
-\frac{5}{4}=\sqrt{2} \) has
A). at least one real solution
B). exactly three real solution
C). exactly one irrational solution.
D). all of the above
-- View Answer
4). The solution of set of the equation \( \Large x log x \left(1-x\right)^{2}=9 \) is
A). \( \Large \{ -2, 4 \} \)
B). \( \Large \{ 4 \} \)
C). \( \Large \{ 0, -2, 4 \} \)
D). none of these
-- View Answer
5). If x is real the expression \( \Large \frac{x+2}{2x^{2}+3x+6} \) takes all values in the interval:
A). \( \Large \left(\frac{1}{13}, \frac{1}{3}\right) \)
B). \( \Large \left(- \frac{1}{13}, \frac{1}{3}\right) \)
C). \( \Large \left(- \frac{1}{3}, \frac{1}{13}\right) \)
D). none of these.
-- View Answer


6). If x is real, then the maximum and minimum values of the expression \( \Large \frac{x^{2}
-3x+4}{x^{2}+3x+4} \) will be:
A). 2,1
B). \( \Large 5, \frac{1}{5} \)
C). \( \Large 7, \frac{1}{7} \)
D). none of these.
-- View Answer
7). The number of real solutions of the equation \( \Large |x^{2}+4x+3|+2x+5=0 \) are:
A). 1
B). 2
C). 3
D). 4
-- View Answer
8). If the roots of the given equation:
\( \Large \left(\cos p-1\right)x^{2}+ \left(\cos p\right)x+\sin p = 0 \) are real, then:
A). \( \Large P \epsilon \left(- \pi ,0\right) \)
B). \( \Large P \epsilon \left(- \frac{ \pi }{2}, \frac{ \pi }{2} \right) \)
C). \( \Large P \epsilon \left(0, \pi \right) \)
D). \( \Large P \epsilon \left(0, 2 \pi \right) \)
-- View Answer
9). The solution of the quadratic equation \( \Large \left(3|x|-3\right)^{2}=|x|+7 \) which belongs to the domain of definition of function \( \Large \gamma = \sqrt{x \left(x-3\right) } \) are given by:
A). \( \Large \pm \frac{1}{9}, \pm 2 \)
B). \( \Large -\frac{1}{9}, 2 \)
C). \( \Large \frac{1}{9}, -2 \)
D). \( \Large -\frac{1}{9}, -2 \)
-- View Answer
10). The number of solution of \( \Large \frac{log 5 + log \left(x^{2}+1\right) }{log \left(x-2\right) }=2 \)
A). 2
B). 3
C). 1
D). none of these
-- View Answer