\(f(x)=x^{2}\). Find \(\int\limits_{\overline{0}}^{a}\) and \(\int\limits_{n}^{\overline{0}}f\)


A) \(\Large \frac{a}{3},\frac{a}{3}\)

B) \(\Large \frac{a^{2}}{3},\frac{a^{2}}{3}\)

C) \(\Large \frac{a^{3}}{3},\frac{a^{3}}{3}\)

D) none of these

Correct Answer:
C) \(\Large \frac{a^{3}}{3},\frac{a^{3}}{3}\)

Description for Correct answer:
Let \(\Large P\{ \frac{ra}{n};r=0,1,2,...n \}\)

be a partition on \([0,a].\) Then

\(\Large m_{r}=\frac{(r-1)^{2}a^{2}}{n^{2}}\)

\(\Large M_{r}=\frac{r^{2}a^{2}}{n^{2}};\ \Delta x_{r}=\frac{a}{n}\)

\(L(P,f)=\sum\limits_{r=1}^{n}m_{r}\Delta x_{r}\)

\(\Large =\sum\limits_{r=1}^{n}\frac{(r-1)^{2}a^{2}}{n^{2}}.\frac{a}{n}\)

\(\Large =\frac{a^{3}}{n^{3}}\sum\limits_{r=1}^{n}(r-1)^{2}\)

\(\Large =\frac{a^{3}}{n^{3}}\left(\frac{(n-1)n(2n-1)}{6}\right) \)

\(\Large =\frac{a^{3}}{6} \left( \left(1-\frac{1}{n}\right) \left(2-\frac{1}{n}\right) \right) \)

\(\Large U(P,f)=\sum\limits_{r=1}^{n}M_{r}\Delta x_{r}\)

\(\Large =\sum\limits_{r=1}^{n}\frac{r^{2}a^{2}}{n^{2}}=\frac{a^{3}}{n^{3}}\sum\limits_{r=1}^{n}r^{2}\)

\(\Large =\frac{a^{3}}{n^{3}}\frac{n(n+1)(2n+1)}{6}\)

\(=\frac{a^{3}}{6} \left(1+\frac{1}{n}\right) \left(2+\frac{1}{n}\right)\)

Therefore

\(\Large \int\limits_{\overline{0}}^{a}f=\lim\limits_{n\rightarrow \infty}\frac{a^{3}}{6} \left(1-\frac{1}{n}\right) \left(2-\frac{1}{n}\right)=\frac{a^{3}}{3}\)

\(\Large \int\limits_{0}^{\overline{a}}f=\lim\limits_{n\rightarrow \infty}\frac{a^{3}}{6} \left(1+\frac{1}{n}\right) \left(2+\frac{1}{n}\right)=\frac{a^{3}}{3}\)

Also,

\(\int\limits_{\overline{0}}^{a}f=\int\limits_{0}^{\overline{a}}f\Rightarrow f\in R[0,a]\)

i.e., f is Reimainn integrable (R-integrable).

Part of solved Real Analysis questions and answers : >> Elementary Mathematics >> Real Analysis








Comments

No comments available




Similar Questions
1). Any countable infinite Set is equivalent to a
A). subset
B). proper subset
C). null set
D). none of these
-- View Answer
2). \(Q \times Q\) is
A). uncountable
B). countable
C). finitgset
D). infinite set
-- View Answer
3). (0, 1] is
A). countable
B). uncountable
C). finite
D). none of these
-- View Answer
4). The set of irrational numbers lying in the interval (0, 1] is
A). countable
B). finite
C). uncountable
D). none of these
-- View Answer
5). The set \(P_{n}\) of all polynomials with integer coefficients is
A). countable
B). uncountable
C). finite
D). none of these
-- View Answer


6). R is equivalent
A). (0, 1)
B). (0, 1]
C). [0, 1]
D). none of these
-- View Answer
7). Which of the following is not true?
A). Cantor set is measurable and its measure zero
B). Cantor set is equivalent to [0, 1]
C). Cantor set is uncountable
D). Cantor set is countable
-- View Answer
8). R with usual metric {0} is
A). open
B). closed
C). half-open
D). none of these
-- View Answer
9). Which of the following is not true?
A). Q is not open in R
B). Z is not open in R
C). Any open interval (a, b) is o
D). [0, 1) is open in R
-- View Answer
10). Let M be any non-empty set Define \[d(x,y)=\begin{cases}0\text{ if }x=y\\1\text{ if }x\ne y\end{cases}\] This metric is called
A). Stanaard Metric
B). Discrete Metric
C). Absolute Metric
D). Bounded Metric
-- View Answer