If \( \Large \tan \alpha = \left(1+2^{-x}\right)^{-1},\ \tan \beta = \left(1-2^{x+1}\right)^{-1},\ then\ \alpha - \beta \) equal


A) \( \Large \frac{ \pi }{6} \)

B) \( \Large \frac{ \pi }{4} \)

C) \( \Large \frac{ \pi }{3} \)

D) \( \Large \frac{ \pi }{2} \)

Correct Answer:
B) \( \Large \frac{ \pi }{4} \)

Description for Correct answer:
We have,

\( \Large \tan \left( \alpha + \beta \right) = \frac{\tan \alpha + \tan \beta }{1-\tan \alpha \tan \beta } \)

\( \Large \therefore \tan \alpha = \frac{1}{1+2^{-x}} \)

and \( \Large \tan \beta = \frac{1}{1+2^{x+1}} \)

\( \Large \frac{1}{1+\frac{1}{2^{x}}} + \frac{1}{1+2^{x+1}} \)

\( \Large \therefore \tan \left( \alpha + \beta \right) = \frac{2}{1+\frac{1}{2x}.\frac{1}{1+2^{x+1}}} \)

=> \( \Large \tan \left( \alpha + \beta \right) = \frac{2^{x}+2.2^{x+x}+2^{x}+1}{1+2^{x}+2.2^{x}+2.2^{x+x}-2^{x}} \)

=> \( \Large \tan \left( \alpha + \beta \right) = 1 \)

=> \( \Large \alpha + \beta = \frac{ \pi }{4} \)

Part of solved Trigonometric ratio questions and answers : >> Elementary Mathematics >> Trigonometric ratio








Comments

No comments available




Similar Questions
1). If \( \Large \tan A + \sin A = m\ and\ \tan A - \sin A = n,\ then\ \frac{ \left(m^{2}-n^{2}\right)^{2} }{mn} \) is equal to:
A). 4
B). 3
C). 16
D). 9
-- View Answer
2). \( \Large 3 \left(\sin x - \cos x\right)^{4} + 6 \left(\sin x + \cos x\right)^{2} + 4 \left(\sin^{6}x + \cos^{6}x\right) \) is equal to:
A). 11
B). 12
C). 13
D). 14
-- View Answer
3). If \( \Large \cos \theta = \cos \alpha \cos \beta .\ then\ \tan \frac{ \theta + \alpha }{2} \tan \frac{ \theta - \alpha }{2} \) is equal to:
A). \( \Large \tan^{2}\frac{ \alpha }{2} \)
B). \( \Large \tan^{2}\frac{ \beta }{2} \)
C). \( \Large \tan^{2}\frac{ \theta }{2} \)
D). \( \Large \cot^{2}\frac{ \beta }{2} \)
-- View Answer
4). The greatest value of \( \Large \cos \theta \) for which \( \Large \cos 5 \theta = 0 \), is:
A). 0
B). \( \Large \frac{1+\sqrt{5}}{4} \)
C). \( \Large \sqrt{\frac{5+\sqrt{5}}{8}} \)
D). \( \Large \sqrt{\frac{5+\sqrt{1}}{4}} \)
-- View Answer
5). A solution \( \Large \left(x, y\right)\ of\ x^{2}+2x \sin xy + 1 = 0 \) is:
A). (1,0)
B). \( \Large \left(1,\ \frac{7 \pi }{2}\right) \)
C). \( \Large \left(-1, \frac{7 \pi }{2}\right) \)
D). (-1, 0)
-- View Answer


6). If \( \Large \tan \theta ,\ 2 \tan \theta + 2,\ 3 \tan \theta + 3 \) are in GP, then the value of \( \Large \frac{7-5 \cot \theta }{9-4\sqrt{sec ^{2} \theta - 1}} \) is:
A). \( \Large \frac{12}{5} \)
B). \( \Large -\frac{33}{28} \)
C). \( \Large \frac{33}{100} \)
D). \( \Large \frac{12}{13} \)
-- View Answer
7). The distance of the point (-2, 3) from the line x -y = 5 is:
A). \( \Large 5\sqrt{2} \)
B). \( \Large 2\sqrt{5} \)
C). \( \Large 3\sqrt{5} \)
D). \( \Large 5\sqrt{3} \)
-- View Answer
8). The equation of the straight line joining the origin to the point of intersection of \( \Large y-x+7=0\ and\ y+2x-2=0 \)is:
A). \( \Large 3x+4y=0 \)
B). \( \Large 3x-4y=0 \)
C). \( \Large 4x-3y=0 \)
D). \( \Large 4x+3y=0 \)
-- View Answer
9). The equation of the straight line which is perpendicular to\( \Large y = x \) and passes through (3, 2) is:
A). \( \Large x-y = 5 \)
B). \( \Large x+y = 5 \)
C). \( \Large x+y = 1 \)
D). \( \Large x-y = 1 \)
-- View Answer
10). The angle between the straight lines \( \Large x-y\sqrt{3}=5\ and\ \sqrt{3}x+y=7 \) is:
A). \( \Large 90 ^{\circ} \)
B). \( \Large 60 ^{\circ} \)
C). \( \Large 75 ^{\circ} \)
D). \( \Large 30 ^{\circ} \)
-- View Answer