Topics

# $$\Large log_{10}2500 - log_{10}25$$

 A) 4 B) 5 C) 2 D) 1

 C) 2

$$\Large log_{10}2500 - log_{10}25$$

=$$\Large log_{10} \left(\frac{2500}{25}\right)$$

=$$\Large log_{10}100$$

=$$\Large log_{10}10^{2} = 2log_{10}10 = 2$$

Part of solved Logarithms questions and answers : >> Elementary Mathematics >> Logarithms

Similar Questions
1). Write in terms of indices: $$\Large log_{27}81=\frac{4}{3}$$
 A). $$\Large 3^{4}$$ B). $$\Large 3^{3}$$ C). $$\Large 27^{\frac{1}{3}}$$ D). $$\Large 27^{\frac{2}{3}}$$
2). Slmplify: $$\Large log_{10}4+log_{10}25$$
 A). 6 B). 5 C). 4 D). 100
3). Find the value of $$\Large log_{3}72-log_{3}8$$
 A). 2 B). 9 C). 8 D). 24
4). Find the value of $$\Large 3log_{a}2-log_{a}8$$
 A). 0 B). 8 C). 4 D). 10
5). Simplify: $$\Large log_{a}10-log_{a} \left(\frac{10}{a}\right)$$
 A). 0 B). 1 C). 100 D). -1

6). Find the value of $$\Large \frac{1}{2}log_{2}16$$
 A). 4 B). 8 C). 2 D). None of these
7). Find the value of $$\Large log_{10}8100$$
 A). $$\Large 2+2log_{10}9$$ B). $$\Large 2log_{10}9$$ C). $$\Large 2+log_{10}9$$ D). $$\Large 2 \left(1+3log_{10}9\right)$$
9). Find the value of $$\Large \frac{75}{16}-2log\frac{5}{9}+log\frac{32}{243}$$
10). Simplify: $$\Large log_{10} \left(\frac{55}{46}\right)-log_{10} \left(\frac{65}{69}\right)+log_{10} \left(\frac{26}{33}\right)$$