Simplify: \( \Large log_{10}2500 \)


A) 2

B) 1

C) 3

D) 4

Correct Answer:
B) 1

Description for Correct answer:
Simplify: \( \Large log_{10}2500 \)

\( \Large log_{10}2500 \) = \( \Large log_{10} \left(25 \times 100\right) \)

=\( \Large log_{10}25+log_{10}100 \)

=\( \Large log_{10}5^{2}+log_{10}10^{2} \)

=\( \Large 2log_{10}5+2log_{10}10 \)

=\( \Large 2log_{10}5+2 \)

Therefore, \( \Large \left[ log_{10}10=1 \right] \)

Part of solved Logarithms questions and answers : >> Elementary Mathematics >> Logarithms








Comments

No comments available




Similar Questions
1). \( \Large log_{10}2500 - log_{10}25 \)
A). 4
B). 5
C). 2
D). 1
-- View Answer
2). Write in terms of indices: \( \Large log_{27}81=\frac{4}{3} \)
A). \( \Large 3^{4} \)
B). \( \Large 3^{3} \)
C). \( \Large 27^{\frac{1}{3}} \)
D). \( \Large 27^{\frac{2}{3}} \)
-- View Answer
3). Slmplify: \( \Large log_{10}4+log_{10}25 \)
A). 6
B). 5
C). 4
D). 100
-- View Answer
4). Find the value of \( \Large log_{3}72-log_{3}8 \)
A). 2
B). 9
C). 8
D). 24
-- View Answer
5). Find the value of \( \Large 3log_{a}2-log_{a}8 \)
A). 0
B). 8
C). 4
D). 10
-- View Answer


6). Simplify: \( \Large log_{a}10-log_{a} \left(\frac{10}{a}\right) \)
A). 0
B). 1
C). 100
D). -1
-- View Answer
7). Find the value of \( \Large \frac{1}{2}log_{2}16 \)
A). 4
B). 8
C). 2
D). None of these
-- View Answer
8). Find the value of \( \Large log_{10}8100 \)
A). \( \Large 2+2log_{10}9 \)
B). \( \Large 2log_{10}9 \)
C). \( \Large 2+log_{10}9 \)
D). \( \Large 2 \left(1+3log_{10}9\right) \)
-- View Answer
9). If log2=0.3010 and log3=.04771. Find the value of log12
A). 0.7781
B). 1.0791
C). 0.9541
D). 0.602
-- View Answer
10). Find the value of \( \Large \frac{75}{16}-2log\frac{5}{9}+log\frac{32}{243} \)
A). log5
B). log4
C). log2
D). log3
-- View Answer