Topics

# Simplify: $$\Large log_{10}2500$$

 A) 2 B) 1 C) 3 D) 4

 B) 1

Simplify: $$\Large log_{10}2500$$

$$\Large log_{10}2500$$ = $$\Large log_{10} \left(25 \times 100\right)$$

=$$\Large log_{10}25+log_{10}100$$

=$$\Large log_{10}5^{2}+log_{10}10^{2}$$

=$$\Large 2log_{10}5+2log_{10}10$$

=$$\Large 2log_{10}5+2$$

Therefore, $$\Large \left[ log_{10}10=1 \right]$$

Part of solved Logarithms questions and answers : >> Elementary Mathematics >> Logarithms

Similar Questions
1). $$\Large log_{10}2500 - log_{10}25$$
 A). 4 B). 5 C). 2 D). 1
2). Write in terms of indices: $$\Large log_{27}81=\frac{4}{3}$$
 A). $$\Large 3^{4}$$ B). $$\Large 3^{3}$$ C). $$\Large 27^{\frac{1}{3}}$$ D). $$\Large 27^{\frac{2}{3}}$$
3). Slmplify: $$\Large log_{10}4+log_{10}25$$
 A). 6 B). 5 C). 4 D). 100
4). Find the value of $$\Large log_{3}72-log_{3}8$$
 A). 2 B). 9 C). 8 D). 24
5). Find the value of $$\Large 3log_{a}2-log_{a}8$$
 A). 0 B). 8 C). 4 D). 10

6). Simplify: $$\Large log_{a}10-log_{a} \left(\frac{10}{a}\right)$$
 A). 0 B). 1 C). 100 D). -1
7). Find the value of $$\Large \frac{1}{2}log_{2}16$$
8). Find the value of $$\Large log_{10}8100$$
 A). $$\Large 2+2log_{10}9$$ B). $$\Large 2log_{10}9$$ C). $$\Large 2+log_{10}9$$ D). $$\Large 2 \left(1+3log_{10}9\right)$$
10). Find the value of $$\Large \frac{75}{16}-2log\frac{5}{9}+log\frac{32}{243}$$