Topics

A) 850.5 |

B) 858.5 |

C) 854.5 |

D) 852.5 |

Correct Answer:

B) 858.5 |

Description for Correct answer:

\( \large 1^2 + 2^2 + 3^2 + 4^2+ ..... +n^2 = \frac{n\left(n + 1\right)\left(2n + 1\right)}{6} \)

\( \large 1^2 + 2^2 + 3^2 + 4^2+ ..... +50^2 = \frac{50 \times 51 \times 101}{6}\)

=42925

Required average \( \large = \left( \frac{42925}{50} \right) = 858.5 \)

\( \large 1^2 + 2^2 + 3^2 + 4^2+ ..... +n^2 = \frac{n\left(n + 1\right)\left(2n + 1\right)}{6} \)

\( \large 1^2 + 2^2 + 3^2 + 4^2+ ..... +50^2 = \frac{50 \times 51 \times 101}{6}\)

=42925

Required average \( \large = \left( \frac{42925}{50} \right) = 858.5 \)

Part of solved Average questions and answers : >> Aptitude >> Average

Comments

Similar Questions