lf every point on the line \( \Large \left(a_{1}-a_{2}\right)x+ \left(b_{1}-b_{2}\right)y=c \) is equidistant from the points \( \Large \left(a_{1},\ b_{1}\right) \) then 2c is equal to:


A) \( \Large a^{2}_{1}+b^{2}_{1}+a^{2}_{2}-b^{2}_{2} \)

B) \( \Large a^{2}_{1}+b^{2}_{1}+a^{2}_{2}+b^{2}_{2} \)

C) \( \Large a^{2}_{1}+b^{2}_{1}-a^{2}_{2}-b^{2}_{2} \)

D) none of these

Correct Answer:
C) \( \Large a^{2}_{1}+b^{2}_{1}-a^{2}_{2}-b^{2}_{2} \)

Description for Correct answer:

Let \( \Large \left(h,\ k\right) \) be any point on the given line, then

\( \Large \left(h-a_{1}\right)^{2}+ \left(k-b_{1}\right)^{2}= \left(h-a_{2}\right)^{2}+ \left(k-b_{2}\right)^{2} \)

=> \( \Large 2 \left(a_{1}-a_{2}\right)h+2 \left(b_{1}-b_{2}\right)k = a^{2}_{1}+b^{2}_{1}-a^{2}_{2}-b^{2}_{2} \)

=> \( \Large \left(a_{1}-a_{2}\right)h+ \left(b_{1}-b_{2}\right)k=\frac{1}{2} \left(a^{2}_{1}+b^{2}_{1}-a^{2}_{2}-b^{2}_{2}\right) \)

Since (h, k) lies on the given line

\( \Large \left(a_{1}-a_{2}\right)h+ \left(b_{1}-b_{2}\right)k=c \)

On comparing equations (i) and (ii), we get

\( \Large c = \left(\frac{1}{2}\right) \left(a^{2}_{1}+b^{2}_{1}\right)-a^{2}_{2}-b^{2}_{2} \)


Part of solved Rectangular and Cartesian products questions and answers : >> Elementary Mathematics >> Rectangular and Cartesian products








Comments

No comments available




Similar Questions
1). If two vertices of a triangle are \( \Large \left(-2,\ 3\right)\ and\ \left(5,\ -1\right) \) orthocentre lies at origin and centroid on the line x + y = 7, then the third vertex lies at:
A). \( \Large \left(7,\ 4\right) \)
B). \( \Large \left(8,\ 14\right) \)
C). \( \Large \left(12,\ 21\right) \)
D). none of these
-- View Answer
2). The locus of a points p which moves such that 2PA = 3PB, where \( \Large A \left(0,\ 0\right)\ and\ B \left(4,\ -3\right) \) are points is:
A). \( \Large 5x^{2}-5y^{2}-72x+54y+225=0 \)
B). \( \Large 5x^{2}+5y^{2}-72x+54y+225=0 \)
C). \( \Large 5x^{2}+5y^{2}+72x-54y+225=0 \)
D). \( \Large 5x^{2}+5y^{2}-72x-54y+225=0 \)
-- View Answer
3). If \( \Large A \left(-a,0\right)  \) and \( \Large B \left(a,0\right)  \) are two fixed points, then the locus of the point at which AB subtends a right angle is;
A). \( \Large x^{2}+y^{2}=2a^{2} \)
B). \( \Large x^{2}-y^{2}=a^{2} \)
C). \( \Large x^{2}+y^{2}+a^{2}=0 \)
D). \( \Large x^{2}+y^{2}=a^{2} \)
-- View Answer
4). If \( \Large a+b+c=0 \), then \( \Large a^{3}+b^{3}+c^{3} \) is equal to
A). \( \Large a^{2} \left(b+c\right)+b^{2} \left(c+a\right)+c^{2} \left(a+b\right) \)
B). \( \Large 3 \left(b+c\right) \left(c+a\right) \left(a+b\right) \)
C). \( \Large 3abc \)
D). \( \Large 6a^{2}b^{2}c^{2} \)
-- View Answer
5). Largest number among \( \Large 2^{2^{2}},\ 2^{22},\ 222,\ \left(22\right)^{2} \) is
A). \( \Large 2^{22} \)
B). \( \Large 2^{2^{2}} \)
C). 222
D). \( \Large \left(22\right)^{2} \)
-- View Answer


6). Both addition and multiplication of numbers are operations which are
A). commutative but not associative
B). commutative and associative
C). associative but not commutative
D). neither commutative nor associative
-- View Answer
7). The positive square root of \( \Large \left(x^{2}+2x-1\right)+\frac{1}{x^{2}+2x+1} \) is
A). \( \Large \left(x+1\right)+\frac{1}{ \left(x+1\right) } \)
B). \( \Large \left(x+1\right)-\frac{1}{ \left(x+1\right) } \)
C). \( \Large \left(x+2\right)-\frac{1}{ \left(x+1\right) } \)
D). \( \Large \left(x+2\right)+\frac{1}{ \left(x+1\right) } \)
-- View Answer
8). The simplified value of the decimal fraction \( \Large \frac{1.59 \times 1.59-.41 \times .41}{1.59-.41} \)
A). 1
B). 1.4
C). 2
D). 2.6
-- View Answer
9). The fraction \( \Large 101\frac{27}{100000} \) in decimal form is
A). 101.000027
B). 101.00027
C). 0.10127
D). 0.010127
-- View Answer
10). If \( \Large X^{y}=Y^{z},\ then\ \left(\frac{X}{Y}\right)^{x/y} \) equals
A). \( \Large X^{x/y} \)
B). \( \Large X^{ \left(x/y\right)-1 } \)
C). \( \Large X^{y/x} \)
D).
-- View Answer