The co-ordinate axis rotated through an angle \( \Large 135 ^{\circ} \). If the co-ordinates of a points P in the new system are known to be \( \Large \left(4,\ -3\right) \), then the co-ordinates of P in the original systems are:


A) \( \Large \left(\frac{1}{\sqrt{2}},\ \frac{7}{\sqrt{2}}\right) \)

B) \( \Large \left(\frac{1}{\sqrt{2}},\ -\frac{7}{\sqrt{2}}\right) \)

C) \( \Large \left( - \frac{1}{\sqrt{2}},\ -\frac{7}{\sqrt{2}}\right) \)

D) \( \Large \left( - \frac{1}{\sqrt{2}},\ \frac{7}{\sqrt{2}}\right) \)

Correct Answer:
D) \( \Large \left( - \frac{1}{\sqrt{2}},\ \frac{7}{\sqrt{2}}\right) \)

Description for Correct answer:

We know, if co-ordinate axes are rotated, then

\( \Large P= \left(x \cos \theta - y \sin \theta ,\ x \sin \theta + y \cos \theta \right) \)

Its rotated at an angle \( \Large 135 ^{\circ} i.e.,\ \theta = 135 ^{\circ} \) and new point be

\( \Large P= 4 \cos \left(90 ^{\circ} + 45 ^{\circ} \right) + 3 \sin \left(90 ^{\circ} + 45 ^{\circ} \right), \) \( \Large 4 \sin \left(90 ^{\circ} + 45 ^{\circ} \right) - 3 \cos \left(90 ^{\circ} + 45 ^{\circ} \right) \)

= \( \Large \left[ 4 \left(\frac{-1}{\sqrt{2}}+3.\frac{1}{\sqrt{2}},\ 4.\frac{1}{\sqrt{2}}+3.\frac{1}{\sqrt{2}}\right) \right] = \left(-\frac{1}{\sqrt{2}},\ \frac{7}{\sqrt{2}}\right) \)


Part of solved Rectangular and Cartesian products questions and answers : >> Elementary Mathematics >> Rectangular and Cartesian products








Comments

No comments available




Similar Questions
1). Area of quadrilateral whose vertices are \( \Large \left(2,\ 3\right),\ \left(3,\ 4\right),\ \left(4,\ 5\right)\ and\ \left(5,\ 6\right) \)
A). 0
B). 4
C). 6
D). none of these
-- View Answer
2). Co-ordinates of the foot of the perpendicular drawn from \( \Large \left(0,\ 0\right) \) to the line joining \( \Large \left(a \cos \alpha ,\ a \sin \alpha\right)\ and\ \left(a \cos \beta ,\ a \sin \beta \right) \) are:
A). \( \Large \left(\frac{a}{2},\ \frac{b}{2}\right) \)
B). \( \Large \left(\frac{a}{2} \left(\cos \alpha + \cos \beta \right), \frac{a}{2} \left(\sin \alpha + \sin \beta \right) \right) \)
C). \( \Large \left(\cos\frac{ \alpha + \beta }{2},\ \sin\frac{ \alpha + \beta }{2}\right) \)
D). \( \Large \left(0,\ \frac{b}{2}\right) \)
-- View Answer
3). An equilateral triangle has each side equal to a the co-ordinates of its vertices are \( \Large \left(x_{1},\ y_{1}\right),\ \left(x_{2},\ y_{2}\right)\ and\ \left(x_{3},\ y_{3}\right) \), then the square of determinant \( \begin{vmatrix} 
x_{1} & y_{1} & 1 \\ 
x_{2} & y_{2} & 1 \\ 
x_{3} & y_{3} & 1  
\end{vmatrix}  \) equals
A). \( \Large 3a^{4} \)
B). \( \Large \frac{3}{4}a^{4} \)
C). \( \Large 4a^{4} \)
D). none of these
-- View Answer
4). The incentre of triangle with vertices \( \Large \left(1,\ \sqrt{3}\right),\ \left(0,\ 0\right)\ and\ \left(2,\ 0\right) \) is:
A). \( \Large \left(1,\ \frac{\sqrt{3}}{2}\right) \)
B). \( \Large \left(\frac{2}{3},\ \frac{1}{\sqrt{3}}\right) \)
C). \( \Large \left(\frac{2}{3},\ \frac{\sqrt{3}}{2}\right) \)
D). \( \Large \left(1,\ \frac{1}{\sqrt{3}} \right) \)
-- View Answer
5). If \( \Large P \left(a_{1},\ b_{1}\right)\ and\ Q \left(a_{2},\ b_{2}\right) \) are two points, the \( \Large OP.OQ \cos \left( \angle POQ\right) \) is (O is origin ):
A). \( \Large a_{1}a_{2}+b_{1}b_{2} \)
B). \( \Large a^{2}_{1}+a^{2}_{2}+b^{2}_{1}+b^{2}_{2} \)
C). \( \Large a^{2}_{1}-a^{2}_{2}+b^{2}_{1}-b^{2}_{2} \)
D). none of these
-- View Answer


6). If a point \( \Large P \left(4,\ 3\right) \) is shifted by a distance \( \Large \sqrt{2} \) unit parallel to the line y = x, then co-ordinates of P in new position are:
A). \( \Large \left(5,\ 4\right) \)
B). \( \Large \left(5+\sqrt{2},\ 4+\sqrt{2}\right) \)
C). \( \Large \left(5-\sqrt{2},\ 4-\sqrt{2}\right) \)
D). none of these
-- View Answer
7). The orthocentre of a triangle formed by lines \( \Large 2x+y=2,\ x-2y=1\ and\ x+y=1 \) is:
A). \( \Large \left(\frac{1}{3},\ \frac{2}{3}\right) \)
B). \( \Large \left(0,\ 1\right) \)
C). \( \Large \left(\frac{2}{3},\ \frac{1}{3} \right) \)
D). \( \Large \left(1,\ 0\right) \)
-- View Answer
8). The incentre of triangle formed by lines x = 0, y = 0 and 3x+4y = 12 is at:
A). \( \Large \left(\frac{1}{2},\ \frac{1}{2}\right) \)
B). \( \Large \left(1,\ 1\right) \)
C). \( \Large \left(1,\ \frac{1}{2} \right) \)
D). \( \Large \left(\frac{1}{2},\ 1\right) \)
-- View Answer
9). If the vertices of a triangle have integral co ordinates, the triangle cannot be:
A). an equilateral triangle
B). a right angled triangle
C). an isosceles triangle
D). none of these
-- View Answer
10). If \( \Large t_{1}+t_{2}+t_{3}=-t_{1}t_{2}t_{3} \) then orthocentre of the triangle formed by the points \( \Large \left[ at_{1}t_{2},\ a \left(t_{1}+t_{2}\right) \right],\ \left[ at_{2}t_{3},\ a \left(t_{2}+t_{3}\right) \right]\ and\ \left[ at_{3}t_{1},\ a \left(t_{3}-t_{1}\right) \right] \) lies on;
A). \( \Large \left(a,\ 0\right) \)
B). \( \Large \left(-a,\ 0\right) \)
C). \( \Large \left(0,\ a\right) \)
D). \( \Large \left(0,\ -a\right) \)
-- View Answer