If one root of the equation \( \Large x^{2}+px+12=0 \) is 4, while the equation \( \Large x^{2}-7x+q=0 \) has equal roots, then the value of 'g' is:


A) \( \Large \frac{49}{4} \)

B) 12

C) 3

D) 4

Correct Answer:
A) \( \Large \frac{49}{4} \)

Description for Correct answer:

Since, 4 is one the roots of equation \( \Large x^{2}+px+12=0 \) so it must satisfies the equation

\( \Large \therefore 16 + 4P + 12 = 0\)

\( \Large 4 \pi = -28 \)

=> P = -7

The other equation is \( \Large x^{2}-7x+q=0 \) whose roots are equal lets roots are \( \Large \alpha \) and \( \Large \alpha \) of above equation

\( \Large \therefore Sum\ of\ roots = \alpha + \alpha = \frac{7}{1} \)

=> \( \Large 2 \alpha = 7 => \alpha =\frac{7}{2} \)

and product of roots = a . a = q.

\( \Large \alpha ^{2} = q \)

=> \( \Large \left(\frac{7}{2}\right)^{2}=q => q=\frac{49}{4} \)


Part of solved Quadratic Equations questions and answers : >> Elementary Mathematics >> Quadratic Equations








Comments

No comments available




Similar Questions
1). Let \( \Large 2\sin^{2}+3\sin x-2>0 \) and \( \Large x^{2}-x-2<0 \) (x is measured in radians). Then x lies in the interval:
A). \( \Large \left(\frac{ \pi }{6},\frac{5 \pi }{6}\right) \)
B). \( \Large \left(-1, \frac{5 \pi }{6}\right) \)
C). \( \Large \left(-1, 2\right) \)
D). \( \Large \left(\frac{ \pi }{6}, 2\right) \)
-- View Answer
2). If at least one root of \( \Large 2x^{2}+3x+5=0 \) and \( \Large ax^{2}+bx+c=0 \), a, b, c, belongs to N is common, then the maximum value of a + b + c is:
A). 10
B). 0
C). does not exist
D). none of these
-- View Answer
3). If the roots of the quadratic equation \( \Large x^{2}+px+q=0 \) are \( \Large \tan 30 ^{\circ} and\ \tan 15 ^{\circ} \) respectively, then the value of\( \Large 2+q-p \) is
A). 3
B). 0
C). 1
D). 2
-- View Answer
4). If \( \Large P \left(x\right)=ax^{2}+bx+c \) and \( \Large Q \left(x\right)=-ax^{2}+dx+c \) where \( \Large ac \ne 0 \) then \( \Large P \left(x\right) Q \left(x\right) = 0 \) has at least:
A). four real roots
B). two real roots
C). four imaginary roots
D). none of these
-- View Answer
5). The coefficient of x in the equation \( \Large x^{2}+px+q=0 \) was taken as 17 in place of 13 its roots Were found to be -2 and -15. The roots of the original equation are:
A). 3,10
B). -3 , -10
C). -5, -8
D). None of these
-- View Answer


6). The number which exceeds its positive Square roots by 12 is:
A). 9
B). 16
C). 25
D). none of these
-- View Answer
7). Let a, b, c be real numbers a \( \ne \) 0. If \( \Large \alpha \) is a root of \( \Large a^{2}x^{2}+bx+c=0, \),\( \Large \beta \) is a root of \( \Large a^{2}x^{2}-bx-c=0 \) and \( \Large 0< \alpha < \beta \) then the equation \( \Large a^{2}x^{2}+2bx+2c=0 \) has a root of \( \gamma \) that always satisfies:
A). \( \Large \gamma = \frac{ \alpha + \beta }{2} \)
B). \( \Large \gamma = \alpha + \frac{ \beta }{2} \)
C). \( \Large \gamma = \alpha \)
D). \( \Large \alpha < \gamma < \beta \)
-- View Answer
8). The equation \( \Large x \left(\frac{3}{4}log_{2}x\right)^{2}+ \left(log_{2}x\right)
-\frac{5}{4}=\sqrt{2} \) has
A). at least one real solution
B). exactly three real solution
C). exactly one irrational solution.
D). all of the above
-- View Answer
9). The solution of set of the equation \( \Large x log x \left(1-x\right)^{2}=9 \) is
A). \( \Large \{ -2, 4 \} \)
B). \( \Large \{ 4 \} \)
C). \( \Large \{ 0, -2, 4 \} \)
D). none of these
-- View Answer
10). If x is real the expression \( \Large \frac{x+2}{2x^{2}+3x+6} \) takes all values in the interval:
A). \( \Large \left(\frac{1}{13}, \frac{1}{3}\right) \)
B). \( \Large \left(- \frac{1}{13}, \frac{1}{3}\right) \)
C). \( \Large \left(- \frac{1}{3}, \frac{1}{13}\right) \)
D). none of these.
-- View Answer