Topics

# $$\Large \frac{\left[0.5 \times 0.5 \times 0.5 + 0.2 \times 0.2 \times 0.2 + 0.3 \times 0.3 \times 0.3 - 3 \times 0.5 \times 0.3 \times 0.2 \right]}{\left[ 0.5 \times 0.5 + 0.2 \times 0.2 + 0.3 \times 0.3 -0.5 \times 0.2 - 0.2 \times 0.3 - 0.5 \times 0.3 \right]} = ?$$

 A) 1 B) 0.6 C) 0.4 D) 0.03

 A) 1

Given expression

$$\Large \frac{a^{3} + b^{3} + c^{3} - 3abc}{a^{2} + b^{2} + c^{2} - ab - bc - ca}$$

= a + b + c

= 0.5 + 0.2 + 0.3

where, a = 0.5, b = 0.2, c = 0.3
= 0.5 + 0.2 + 0.3 = 1

Part of solved Simplification questions and answers : >> Elementary Mathematics >> Simplification

Similar Questions
1). $$\Large \frac{8.73 \times 8.73 \times 8.73 + 4.27 \times 4.27 \times 4.27}{8.73 \times 8.73 - 8.73 \times 4.27 + 4.27 \times 4.27}$$ is equal t o
 A). 11 B). 13 C). $$\Large \frac{11}{7}$$ D). None of these
2). $$\Large \sqrt{289} - \sqrt{625} \div \sqrt{25}$$ is equal to
 A). 17 B). 15 C). 12 D). $$\Large - \frac{8}{5}$$
3). If $$\Large a^{2} + 1 = a$$, then what is the value of $$\Large a^{12} + a^{6} + 1$$ is
 A). 2 B). 3 C). -3 D). 1
4). If a, b and c are non-zero, $$\Large a + \frac{1}{b} = 1$$ and $$\Large b + \frac{1}{c} = 1$$, then the value of abc is
 A). -3 B). 1 C). -1 D). 3
5). If a + b + c = 0, then the value of $$\Large \left(\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b}\right)$$ $$\Large \left(\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}\right)$$
 A). 9 B). 0 C). 8 D). -3

6). If $$\Large a * b = a + b + \frac{a}{b}$$, then the value $$\Large 12 * 4$$ is
 A). 48 B). 19 C). 20 D). 21
7). If $$\Large x = \frac{\sqrt{2}+1}{\sqrt{2}-1}$$ and $$\Large x - y = 4\sqrt{2}$$, then the value of $$\Large \left(x^{2} + y^{2}\right)$$ is
8). If $$\Large x + \frac{a}{x} = 1$$, then the value of $$\Large \frac{x^{2}+x+a}{x^{3}-x^{2}}$$ is
 A). -2 B). $$\Large - \frac{a}{2}$$ C). $$\Large \frac{2}{a}$$ D). $$\Large - \frac{2}{a}$$
9). If $$\Large \sqrt{28 - 6\sqrt{3}} = \sqrt{3} a + b$$, (where a, b are rationale), value of $$\Large \left(a + b\right)$$ is
10). If $$\Large x + y = 1$$, then the value of $$\Large x^{3} + y^{3} + 3xy$$ is